The reaction-diffusion system: a mechanism for autonomous pattern formation in the animal skin.

نویسنده

  • Shigeru Kondo
چکیده

How do animals acquire their various skin patterns? Although this question may seem easy, in fact it is very difficult to answer. The problem is that most animals have no related structures under the skin; therefore, the skin cells must form the patterns without the support of a prepattern. Recent progress in developmental biology has identified various molecular mechanisms that function in setting the positional information needed for the correct formation of body structure. None of these can explain how skin pattern is formed, however, because all such molecular mechanisms depend on the existing structure of the embryo. Although little is known about the underlying molecular mechanism, many theoretical studies suggest that the skin patterns of animals form through a reaction-diffusion system-a putative 'wave' of chemical reactions that can generate periodic patterns in the field. This idea had remained unaccepted for a long time, but recent findings on the skin patterns of fish have proved that such waves do exist in the animal body. In this review, we explain briefly the principles of the reaction-diffusion mechanism and summarize the recent progress made in this area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches

The Cellular Automata method has been used to simulate the pattern formation of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic Cellular Automata approaches have been considered and two different methods for obtaining the probabilities in the microscopic approach have been mentioned. The results show the tendency of the system towards the more sta...

متن کامل

Pattern Formation of the FitzHugh-Nagumo Model: Cellular Automata Approach

FitzHugh-Nagumo (FHN) model is a famous Reaction-Diffusion System which first introduced for the conduction of electrical impulses along a nerve fiber. This model is also considered as an abstract model for pattern formation. Here, we have used the Cellular Automata method to simulate the pattern formation of the FHN model. It is shown that the pattern of this model is very similar to those...

متن کامل

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Interactions between zebrafish pigment cells responsible for the generation of Turing patterns.

The reaction-diffusion system is one of the most studied nonlinear mechanisms that generate spatially periodic structures autonomous. On the basis of many mathematical studies using computer simulations, it is assumed that animal skin patterns are the most typical examples of the Turing pattern (stationary periodic pattern produced by the reaction-diffusion system). However, the mechanism under...

متن کامل

Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism.

The mechanism by which animal markings are formed is an intriguing problem that has remained unsolved for a long time. One of the most important questions is whether the positional information for the pattern formation is derived from a covert prepattern or an autonomous mechanism. In this study, using the zebrafish as the model system, we attempted to answer this classic question. We ablated t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes to cells : devoted to molecular & cellular mechanisms

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2002